mecanismos de transformación de movimientos

En estos mecanismos, el tipo de movimiento que tiene el elemento de entrada del mecanismo es diferente del tipo de movimiento que tenga el elemento de salida, es decir, el tipo de movimiento se transforma en otro distinto, de ahí el nombre de mecanismo de transformación.

Los mecanismos de transformación puede ser, a su vez, agrupados en dos grandes grupos:

 

  1. Mecanismos de transformación circular-lineal: En este caso, el elemento de entrada tiene movimiento circular, mientras que el elemento de salida tiene movimiento lineal. Ejemplo: El mecanismo piñón-cremallera.
  2. Mecanismos de transformación circular-alternativo: En este caso, el elemento de entrada tiene movimiento circular, mientras que el elemento de salida tiene movimiento alternativo. Ejemplo: El mecanismo de biela-manivela.

 

 

LEVAS:

 

En mecánica, una leva es un elemento mecánico hecho de algún material (madera,metal, plástico, etc.) que va sujeto a un eje y tiene un contorno con forma especial. De este modo, el giro del eje hace que el perfil o contorno de la leva toque, mueva, empuje o conecte una pieza conocida como seguidor.

Permite obtener un movimiento alternativo, a partir de uno circular; pero no nos permite obtener el circular a partir de uno alternativo (o de uno oscilante). Es un mecanismo no reversible, es decir, el movimiento alternativo del seguidor no puede ser transformado en un movimiento circular para la leva. Si haces clic sobre el dibujo de la derecha, verás a la leva en acción.

Es por esto que todas las levas van montadas sobre un mismo elemento llamado árbol de levas. Por otra parte, cada una de las levas obliga a su correspondiente seguidor, llamado taqué, a un movimiento alternativo que se transmite hasta válvula a través de una palanca llamada balancín. Fíjate en la animación y comprenderás inmediatamente de qué hablo.

 

PIÑONES Y CREMALLERAS:

 

Este mecanismo convierte el movimiento circular de un piñón en uno lineal continuo por parte de la cremallera, que no es más que una barra rígida dentada . Este mecanismo es reversible, es decir, el movimiento rectilíneo de la cremallera se puede convertir en un movimiento circular por parte del piñón. En el primer caso, el piñón al girar y estar engranado a la cremallera, empuja a ésta, provocando su desplazamiento lineal.

 

Aunque el sistema es perfectamente reversible, su utilidad práctica suele centrarse solamente en la conversión de circular en lineal continuo, siendo muy apreciado para conseguir movimientos lineales de precisión (caso de microscopios u otros instrumentos ópticos como retroproyectores), desplazamiento del cabezal de los taladros sensitivos, movimiento de puertas automáticas de garaje, sacacorchos, regulación de altura de los trípodes, movimiento de estanterías móviles empleadas en archivos, farmacias o bibliotecas, cerraduras..

Mecanismo de piñón cremallera

 
 
BIELAS:
pie de una biela, que es una barra rígida,  cuyo extremo está articulado y unido a la manivela.  Este sistema también funciona a la inversa, es decir, transforma el movimiento alternativo de la biela en un movimiento de rotación de la manivela. Este mecanismo es esencial, pues se utiliza en motores de combustión interna, máquinas de vapor, máquinas de coser, herramientas mecánicas, etc. En el caso de los motores de los coches, la manivela es sustituida por el cigüeñal, que arrastra los pistones del motor a través de las bielas.
 
Conjunto cigüeñal, biela y pistón
 
El cigüeñal

El cigüeñal es un árbol de transmisión que junto con las bielas transforma el movimiento alternativo en circular, o viceversa. En realidad consiste en un conjunto de manivelas. Cada manivela consta de una parte llamada muñequilla y dos brazos que acaban en el eje giratorio del cigüeñal. Cada muñequilla se une una biela, la cual a su vez está unida por el otro extremo a un pistón. Observa la imagen y lo entenderás inmediatamente…

 
Los cigüeñales se utilizan extensamente en los motores de combustión de los automóviles, donde el movimiento lineal de los pistones dentro de los cilindros se trasmite a las bielas y se transforma en un movimiento rotatorio del cigüeñal que, a su vez, se transmite a las ruedas y otros elementos como un volante de inercia. El cigüeñal es un elemento estructural del motor.
 
 

 

TORNILLO  Y TUERCAS 

El mecanismo tornillo-tuerca, conocido también como husillo-tuerca es un mecanismo de transformación de circular a lineal compuesto por una tuerca alojada en un eje roscado (tornillo).

Si el tornillo gira y se mantiene fija lo orientación de la tuerca, el tornillo avanza con movimiento rectilíneo dentro de ella.

Por otra parte, si se hace girar la tuerca, manteniendo fija la orientación del tornillo, aquella avanzará por fuera de ésta. Este mecanismo es muy común en nuestro entorno, pues lo podemos encontrar en infinidad de máquinas y artilugios.

Evidentemente, este mecanismo es irreversible, es decir, no se puede convertir el movimiento lineal de ninguno de los elementos en circular.

El avance depende depende de dos factores:

  • La velocidad de giro del elemento motriz.

  • El paso de la rosca del tornillo, es decir, la distancia que existe entre dos crestas de la rosca del tornillo. Cuando mayor sea el paso, mayor será la velocidad de avance.

 
 
 
 
 

 

 

 

© 2011 Todos los derechos reservados.

Crea una web gratisWebnode